
Reconstructing Spectral and Colorimetric Data  

Using Trichromatic and Multi-channel Imaging 
Daniel Nyström 

Dept. of Science and Technology (ITN), Linköping University 

SE-60174, Norrköping, Sweden 

danny@itn.liu.se 

 

 

Abstract 
The aim of the study is to reconstruct spectral and 

colorimetric data, using trichromatic and 

multi-channel imaging. An experimental image 

acquisition system is used, which besides trichromatic 

RGB filters also provides the possibility of acquiring 

multi-channel images, using 7 narrowband filters. To 

derive mappings to colorimetric and multispectral 

representations, two conceptually different 

approaches are used. In the model-based approach, 

the physical model describing the image acquisition 

process is inverted, to reconstruct spectral reflectance 

from the recorded device response. A priori knowledge 

on the smooth nature of spectral reflectances is 

utilized, by representing the reconstructed spectra as 

linear combinations of basis functions, using Fourier 

basis and a database of real reflectance spectra. In 

the empirical approach, the characteristics of the 

individual components are ignored, and the functions 

are derived by relating the device response for a set of 

training colors to the corresponding colorimetric and 

spectral measurements. Beside colorimetric 

regression, mapping device values directly to CIEXYZ 

and CIELAB, experiments are also made on 

reconstructing spectral reflectance, using least 

squares regression techniques.  

 

The results indicate that for trichromatic imaging, 

accurate colorimetric mappings can be derived by the 

empirical approach, using polynomial regression to 

CIEXYZ and CIELAB. Because of the 

media-dependency, the characterization functions 

must be derived for each combination of media and 

colorants. However, accurate spectral reconstructions 

require for multi-channel imaging, using model-based 

device characterization. Moreover, the model-based 

approach is general, since it is based on the spectral 

characteristics of the image acquisition system, rather 

than the characteristics of a set of color samples. 

 

Introduction 
The trichromatic principle of representing color has 

for a long time been dominating in color imaging. The 

reason is the trichromatic nature of human color 

vision, but as the characteristics of typical color 

imaging devices are different from those of human 

eyes, there is a need to go beyond the trichromatic 

approach. The interest for multi-channel imaging, i.e. 

increasing the number of color channels, has made it 

an active research topic with a substantial potential of 

application. 

 

To achieve consistent color imaging, one needs to 

map the imaging-device data to the 

device-independent colorimetric representations 

CIEXYZ or CIELAB. As the color coordinates 

depend not only on the reflective spectrum of the 

object but also on the spectral properties of the 

illuminant, the colorimetric representation suffers 

from metamerism, i.e. objects of the same color under 

a specific illumination may appear different when 

they are illuminated by another light source. 

Furthermore, when the sensitivities of the imaging 

device differ from the CIE color matching functions, 

two spectra that appear different for human observers 

may result in identical device response. In 

multispectral imaging, color is represented by the 

object’s spectral reflectance, which is illuminant 

The 9th International Symposium on Multispectral Colour Science and Application 45



independent. With multispectral imaging, different 

spectra are readily distinguishable, no matter they are 

metameric or not. The spectrum can then be 

transformed to any color space and be rendered under 

any illumination.  

 

The focus of the study is colorimetric and 

multispectral image acquisition, which requires 

methods for computing colorimetric and spectral data 

from the recorded device signals. Experiments are 

performed using trichromatic imaging as well as 

multi-channel imaging, using an experimental image 

acquisition system. Two conceptually different 

approaches for device characterization are evaluated: 

model-based and empirical characterization. In the 

model-based approach, the physical model describing 

the process by which the device captures color is 

inverted to reconstruct spectral reflectance. In the 

empirical approach, the device characteristics are 

ignored and the mappings are derived by correlating 

the device response for a set of reference colors to the 

corresponding colorimetric and spectral measurements, 

using least squares regression.  

 

The aim of this comparative study is to answer which 

colorimetric and spectral accuracy that can be 

achieved by employing the different methods for 

device characterization, for trichromatic and 

multi-channel imaging, respectively. Is the 

conventional trichromatic principle of image 

acquisition sufficient, or is multi-channel imaging 

required to reconstruct spectral and colorimetric data 

of high accuracy?  

 

Model-based Characterization 
The linear model for the image acquisition process, 

describing the device response to a known input, is 

given in Eq.1. The device response, dk, for the k:th 

channel is, for each pixel, given by: 

 

( ) ( ) ( ) ( )k k k
V

d I F R S d
λ

λ λ λ λ λ ε
∈

= +∫   (1) 

 

where I(λ) is the spectral irradiance of the illumination, 

Fk(λ) is the spectral transmittance of filter k, R(λ) is 

the spectral reflectance of the object, S(λ) is the 

spectral sensitivity function for the camera, εk is the 

measurement noise for channel k, and V is the spectral 

sensitivity region of the device. The model requires 

for a linear response of the CCD sensor with respect 

to the incoming light, which has been verified. 

 

The spectral characteristics of the illumination and the 

filters have been derived from direct measurements, 

using a spectroradiometer. The spectral sensitivity of 

the CCD camera has been estimated in previous work, 

by relating the device response to the known spectral 

reflectance for a set of carefully selected color 

samples, using least-squares regression techniques.1 

The spectral properties of the components in the 

image acquisition system are displayed in Fig. 1. 

 

Figure 1. Spectral power for the illuminant (a), estimated 

spectral sensitivity for the camera (b) and spectral transmittance 

for the RGB filters (c) and the 7 multi-channel filters (d). 

 

Having obtained the forward characterization function 

of all the components in the image acquisition system, 

the known spectral characteristics of the system can 

be represented by a spectral transfer function.2 The 

spectral transfer function, Wk(λ), describes the spectral 

characteristics for each channel, k, as: 

 

( ) ( ) ( ) ( )k kW I F Sλ λ λ λ=    (2) 

 

Denote the spectral signal as a discrete N-component 

vector, sampled at wavelengths λ1,…, λN, and let W be 

the N × K matrix in which each column describes the 

spectral transfer function of channel k. Then the 

device response vector, d, for a sample with spectral 
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reflectance r is given by:  
t=d W r       (3) 

 

When inverting the model, we seek the N × K 

reconstruction matrix M that reconstructs the spectral 

reflectance, ř, from the camera response d, as: 

 

=r Md(
      (4) 

 

The most straightforward approach to derive the 

reconstruction matrix is to simply invert Eq. 3, using 

the pseudo-inverse approach, giving the spectral 

reconstruction operator: 

 
1

0 ( ) ( )t t− −= =M WW W W   (5) 

 

where (Wt)- denotes for the More-Penrose 

pseudo-inverse of Wt. Generally, the pseudo-inverse 

(PI) reconstruction is sensitive to noise, which makes 

the approach not always useful in practices. When K < 

N, i.e. the number of color channels K is less than the 

number of spectral sampling points, N, the matrix W 

is of insufficient rank and the algebraic equations are 

underdetermined. Further more, this method 

minimizes the Euclidian distance in the camera 

response domain (i.e. between d and Wt ř), which 

does not necessarily mean that the reconstructed 

spectrum will be close to the real spectrum.3 

 

Another approach is to instead seek another 

reconstruction matrix, M1, which minimizes the 

Euclidian distance between the reconstructed 

spectrum and the original spectrum.3 By exploiting the 

a priori information that the vast majority of 

reflectance spectra for real and man-made surfaces are 

smooth functions of wavelength,4,5 it can be assumed 

that the spectrum can be represented by a linear 

combination of a set of smooth basis functions, B = 

[b1,b2…bp]. This gives the reconstruction operator M1, 

which minimizes the RMS spectral difference of the 

reconstructed spectrum, as: 3 

 

( ) 1

1
t t t −

=M BB W W BB W   (6) 

 

The base functions, B, can consist of a set of real, 

measured spectral reflectances, which then should be 

representative to the reflectance of samples that is 

likely to be encountered in the image acquisition 

system. An alternative to spectral basis is to simply let 

B consist of a set of Fourier basis functions. 

 

Empirical Characterization 
In empirical characterization, colorimetric and 

spectral data are derived using a “black box“ approach, 

i.e. without explicitly modeling the device 

characteristics. By correlating the device response for 

a training set of color samples to the corresponding 

colorimetric or spectral values, the characterization 

functions are derived using least squares regression 

techniques. 

 

The characterization functions derived using empirical 

approaches will be optimized only for a specific set of 

conditions, including the illuminant, the media and the 

colorant. Once the conditions change, e.g. a different 

substrate or a different print mechanism, the 

characterization has to be re-derived in order to obtain 

good accuracy.6,7 The dependency on the illuminant is 

not an issue when the light source is fixed and can be 

considered as a property of the system. However, the 

fact that the characterization function is also media- 

and colorant dependent is a major drawback, 

preventing the characterization function from being 

applied to arbitrary combinations of media and 

colorants. 

 

Spectral Regression 
Even though empirical approaches are mainly used to 

derive mappings directly to the colorimetric 

representations, CIEXYZ or CIELAB, there have 

been attempts to reconstruct spectral reflectance.8 The 

spectral reconstruction matrix, M, is now derived 

entirely based on the recorded device response to a set 

of training samples, i.e. ignoring the spectral 

characteristics of the imaging system. If the spectral 

reflectance for a set of T training samples are 

collected into a T × N matrix R = [r1,…,rT] and the 

corresponding device responses into a T × K matrix D 

= [d1, …,dT], then the linear relationship is given by: 

 

R = DM       (7) 
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and the optimal K × N spectral reconstruction matrix 

M is then given by: 

 
1( ) ( )t t− −= =M D D D R D R   (8) 

 

In a similar way as for the model-based approach, the 

reconstructed spectra can be represented as linear 

combinations of a set of basis functions. 

 

Colorimetric Regression 
A common approach to derive colorimetric data is to 

use polynomial regression from device values directly 

to CIEXYZ.9 Polynomial regression is a special case 

of least squares regression, where the characterization 

function, relating the device data to the colorimetric 

representations, is approximated by a polynomial, as: 

 

=c pA       (9) 

 

where c is the colorimetric output vector (XYZ or 

L*a*b*), p is the Q-component vector of polynomial 

terms derived from the device data, d, and A is the Q 

× n matrix of polynomial weights. After arranging the 

input device data, d, into the polynomial vector, p, the 

polynomial regression is reduced into a linear least 

squares regression problem, with the optimal matrix 

of polynomial weights, A, given by:  

 
1( ) ( )t t− −= =A P P P C P C   (10) 

 

The drawback with using regression to CIEXYZ is 

that the RMS error in XYZ color space, which is 

minimized in the regression, is not closely related to 

the perceived color difference. If the final aim is to 

derive data in CIELAB color space, it could therefore 

preferable to use regression directly in the CIELAB 

domain, i.e. to minimize the CIE 1976 color 

difference ΔEab, which provides a better 

correspondence to the visual color difference.3 Since 

the relationship between device data and CIELAB is 

not linear, a non-linear pre-processing step of the 

device values, using a cubic root function has been 

proposed, i.e. using R1/3, G1/3, B1/3 in the regression.3 

The cubic root function originates from the CIELAB 

transformation, which involves a cubic root function 

of the XYZ tristimulus values. 

We propose an alternative approach, using polynomial 

regression from device data to CIEXYZ color space, 

but minimizing the perceptually more meaningful 

ΔEab color difference in the process. This cannot be 

achieved using the basic pseudo-inverse solution, but 

requires for some optimization software. The 

parameters derived according to Eqs. 9 and 10, i.e. the 

characterization function minimizing ΔXYZ, are used 

as initial conditions. Then, the new parameters are 

derived by an unconstrained nonlinear optimization, 

using the Optimization toolbox for Matlab, with the 

mean ΔEab color difference for the training set, as a 

cost function. The algorithm used is the BFGS 

Quasi-Newton method, with a mixed quadratic and 

cubic line search procedure. The result is a function 

relating device data to CIEXYZ in a way that 

minimizes the CIE 1976 color difference, ΔEab. 

 

The Image Acquisition System 
The image acquisition system is an experimental 

system, with great flexibility to control and alter the 

setup. While possible to capture images of arbitrary 

objects, the primary usage is to capture macro images 

of flat objects, such as substrates. The main use is to 

acquire high resolution images of prints and substrates, 

to study properties of color printing on a micro-scale 

level.10 

 

The images are captured using a monochrome CCD 

camera with 12 bit dynamic range, specially designed 

for scientific imaging. Macro optics allow for a 

maximal resolution corresponding to 1.2 μm/pixel. 

The illumination is provided using a tungsten halogen 

lamp through optical fibers, which offers an adjustable 

angle of incidence, as well as the possibility of using a 

backlight setup. Color images are sequentially 

captured, using filters mounted in a filter wheel in 

front of the light source. By using this color sequential 

method, there is no need for any interpolation or 

de-mosaicing scheme, as is the case for conventional 

digital cameras, using color filter arrays. Besides the 

trichromatic RGB-filters, the filter wheel also contains 

a set of 7 interference filters, allowing for the 

acquisition of multi-channel images. The interference 

filters have been selected to cover the visible spectrum 

with equally spaced pass bands, see Fig. 1. 
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Since the accuracy of the characterization will always 

be limited by the stability and uniformity of a given 

device, the characterization process has been preceded 

by a thorough calibration of the system. All the 

components have been controlled with respect to 

linearity, temporal stability and spatial uniformity. 

 

Experimental Setup 
The evaluation of the spectral and colorimetric 

reconstructions requires for the acquisition of spectral 

and colorimetric data for a set of test colors, along 

with the corresponding device response. Spectral 

measurements of the color-patches are performed 

using a spectroradiometer, placed in the same optical 

axis as the CCD-camera, using the 45˚/0˚ 

measurement geometry. The spectral data obtained are 

in the interval 380 to 780 nm, sampled at 4 nm 

intervals. For each color patch, the mean reflectance 

spectrum from 5 sequential measurements is 

computed, to account for random noise. The 

colorimetric data have been computed using standard 

formulae, under the D65 standard illuminant. 

Correspondingly, the camera response values have 

been acquired under identical conditions. Before the 

mean values are computed, the images are corrected 

for dark current and CCD gain. 

 

For reference colors to evaluate the results of the 

model-based spectral reconstruction, 25 color patches 

from NCS are used. For the empirical characterization, 

a training set of 50 printed test colors are used to 

derive the characterization functions. For the 

evaluation, 50 independent colors are used, printed 

using the same substrate and conditions as the training 

set. Since characterization functions derived by least 

squares regression will always be optimized for the 

specific training set, it is important to use an 

independent set of evaluation colors to guard against a 

model that overfits the training set, giving 

unrealistically good results.11 

 

As basis functions we evaluate spectral basis, using a 

database of real spectra available from NCS, as well 

as Fourier basis. Five basis functions are used, 

corresponding to the first five Fourier basis functions 

and to the singular vectors corresponding to the five 

most significant singular values in the spectral 

autocorrelation function of the spectral database, 

using the principle eigenvector method.3 

 

Experimental Results 
 
Spectral Reconstruction 
Spectral data has been reconstructed from the 

recorded device response, using the pseudo-inverse 

(PI) method, as well as using spectral and Fourier 

basis, for the model-based and empirical approaches, 

respectively. The results are evaluated using the 

spectral RMS error, corresponding to the Euclidian 

distance in spectral reflectance space, between the 

original and the reconstructed spectra. The CIE 1976 

color difference ΔEab is also computed, to provide a 

better measure of the perceived color difference 

between the spectra.  

 

Table 1 lists the mean and maximum reconstruction 

errors for the different characterization methods, using 

trichromatic RGB imaging, as well as multi-channel 

imaging. Examples of reconstructed spectra, 

compared to the corresponding measured spectra, are 

displayed in Figures 2 and 3, for the model-based and 

empirical characterization, respectively. 

 
Table 1. Spectral reconstruction errors in terms of the spectral 

RMS difference and the CIE 1976 color difference, ΔEab. 

  

Data 

 

Method 

RMS 

Max   Mean 

ΔEab 

Max  Mean 

PI 0.0706 0.0230 24.35 14.80 

Spectral 0.0041 0.0014 15.87 4.170 

RGB 

Fourier 0.0155 0.0049 18.75 8.287 

PI 0.0092 0.0030 4.364 1.529 

Spectral 0.0039 0.0012 4.218 1.816 

M
od

el
-b

as
ed

 

Multi 

Fourier 0.0040 0.0011 7.271 2.112 

PI 0.0082 0.0023 13.22 7.532 

Spectral 0.0062 0.0031 12.49 7.444 

RGB 

Fourier 0.0072 0.0035 13.81 6.897 

PI 0.0030 0.0004 6.899 3.908 

Spectral 0.0040 0.0018 9.320 5.525 

Em
pi

ric
al

 

Multi 

Fourier 0.0052 0.0023 13.90 6.085 
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The results show that for the model-based approach, 

trichromatic imaging is not sufficient to achieve 

spectral or colorimetric accuracy. A mean color 

difference of 4.2 ΔEab and a maximal of almost 16 

ΔEab, is to high to be considered as useful. For the 

multi-channel images, the results improve 

dramatically. Spectral basis and Fourier basis lead to 

equivalent results in terms of the RMS difference, 

while the colorimetric results are in favor of the 

spectral basis. The pseudo-inverse solution is 

somewhat noisy and suffers from larger RMS 

difference. However, the general shapes of the 

reconstructed spectra follow the real spectra well, 

resulting in small colorimetric errors. Clearly, the 

PI-method produces spectral reconstructions that are 

close to metameric matches to the real spectra. 

 

Figure 2. Reconstructed (dashed lines) and measured (full lines) 

spectral reflectance, using model-based characterization. 

 

Figure 3. Reconstructed (dashed lines) and measured (full lines) 

spectral reflectance, using empirical characterization. 

 

For the empirical characterization using trichromatic 

imaging, the pseudo-inverse method is superior to the 

corresponding model-based results. However, the 

improvement when applying the different basis 

functions is not as evident, and the best results for the 

model-based approach could not be achieved. The 

results for the multi-channel images are comparable to 

the corresponding model-based approach in terms of 

spectral RMS difference, but produces larger 

colorimetric errors. 

 
Colorimetric Regression 
For the polynomial regression to CIEXYZ and 

CIELAB, there are numerous ways to build the 

approximation functions, p, and the number of terms, 

Q, increases rapidly for higher order polynomials. The 

results presented here are based on second order 

polynomials. For a detailed description on the 

experiments and the results using different polynomial 

functions, we refer to 12. 

 

Table 2 lists the results for the colorimetric regression 

to CIEXYZ and CIELAB, using trichromatic RGB 

images, as well as multi-channel images. The 

regression to CIEXYZ has been carried out using the 

pseudo-inverse approach according to Eqs. 9 and 10, 

as well as using the non linear optimization, 

minimizing ΔEab. The regression directly to CIELAB 

has been carried out with the unprocessed device 

response, as well as by using the cubic root function 

as a pre-processing (pp) step.  

 

Table 2. The colorimetric reconstruction errors for regression to 

CIEXYZ and CIELAB.  

 

Data 

 

Regression 

ΔXYZ 

Max   Mean 

ΔEab 

Max   Mean 

XYZ 3.453 0.904 4.293 1.942 

XYZ (ΔEab) 4.214 0.890 3.297 1.686 

LAB   5.199 1.916 

RGB 

LAB (pp)   4.317 1.722 

XYZ 3.240 0.945 3.765 1.942 

XYZ (ΔEab) 3.490 0.972 3.715 1.883 

LAB   8.439 2.349 

Multi 

LAB (pp)   3.846 1.957 
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The results show that colorimetric regression directly 

to CIEXYZ and CIELAB gives a good colorimetric 

accuracy. When only colorimetric data is required, it 

is clearly an advantage to use colorimetric regression 

directly to CIEXYZ or CIELAB, compared to using 

regression to reconstruct spectral reflectance. The best 

results were achieved with the approach of using 

regression to CIEXYZ, with the functions derived to 

minimize the ΔEab color difference in CIELAB color 

space.  

 

Noticeable is that the results using trichromatic 

imaging are comparable to the multi-channel results, 

an obvious difference to the results for the 

model-based approach. Clearly, there is nothing to 

gain by increasing the number of channels from 3 to 7, 

when using the colorimetric regression approach. This 

can be explained by the fact that the system of 

equations that is inverted, now is based on the number 

of samples in the training set, not on the number of 

channels in the image acquisition system, as is the 

case for the model-based characterization. 

 

Experiments on cross-media characterization, i.e how 

the derived functions perform when using color 

samples of different media and colorants, has shown, 

that the reconstruction errors increase dramatically.12 

This illustrates the strong media dependency of the 

empirical characterization approach, and the necessity 

to derive the functions once the conditions changes. 

 

Summary and Conclusions 
The focus of this study has been colorimetric and 

multispectral image acquisition, comparing the 

performance of trichromatic and multi-channel 

imaging. To reconstruct colorimetric and spectral data 

from the recorded device response, two conceptually 

different approaches have been investigated: 

model-based and empirical characterization. In the 

model-based approach, the spectral model of the 

image acquisition system is inverted to reconstruct 

spectral reflectance data. A priori knowledge on the 

smooth nature of typical reflectance spectra was 

utilized by representing the reconstructed spectra as 

linear combinations of basis functions, using Fourier 

basis and a set of real reflectance spectra. In the 

empirical approach, the spectral characteristics of the 

system are ignored and the mappings are derived by 

relating the recorded device response to colorimetric 

and spectral data for a set of training colors, using 

least squares regression techniques.  

 

The results have showed that when only trichromatic 

imaging is available, a good colorimetric accuracy can 

be obtained, using polynomial regression to CIEXYZ 

or CIELAB. The best results were obtained using 

regression to CIEXYZ, but minimizing the CIE1976 

ΔEab color difference. Noticeable is that the 

performance for trichromatic imaging was equally 

good as for multi-channel imaging, when using the 

colorimetric regression. However, because of the 

media-dependency, this approach requires for the 

characterization functions to be derived for each 

combination of media and colorants. A satisfactory 

accuracy for spectral reflectance reconstruction could 

not be obtained for trichromatic imaging. 

 

For multispectral imaging, i.e. reconstructing the 

spectral reflectance of objects, multi-channel images 

are required to obtain the highest accuracy. The best 

results were obtained with the model-based approach, 

using multi-channel images combined with spectral 

basis. The model-based approach provides the 

additional advantage of being general, since it is 

derived based on the spectral characteristics of the 

image acquisition system, rather than on the 

characteristics of a set of color samples. However, the 

model-based approach, i.e. inverting the spectral 

transfer function of the imaging system, requires for 

multi-channel imaging to obtain a satisfactory spectral 

or colorimetric accuracy.  
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